Course Details

Course Information
- **Department:** Mechanical Engineering
- **Course #:** EML 3013C, 4 credits
- **Course Title:** Dynamic Systems I
- **Type Course:** Required
- **Terms Offered:** Spring, Summer

Catalog Description
This course is the first part of an integrated sequence in dynamics, vibrations and controls. Material in this first course includes the following: absolute and relative motion of particles and rigid bodies in inertial, translating and rotating coordinate frames; derivation and computer solution of differential equations of motion; single degree of freedom vibrations, and elementary feedback control.

Prerequisites
- EML 3002C, Mechanical Engineering Tools; EML 3004C, Introduction to Mechanical Engineering

Corequisite
- MAP 3305, Engineering Math I

Area Coordinator
- Dr. Emmanuel Collins

Responsible Faculty
- Instructor of Record: Dr. Emmanuel Collins

Date of Preparation
- 5-24-01 (Collins)

Textbooks/Required Material

Science/Design (%):
- 85/15

Contribution to Meeting the Professional Component:
- 85% engineering science, laboratory experience
- 15% engineering design

Course Topics
1. Kinematics of a Particle
2. Kinetics of a Particle: Newton’s 2nd Law
3. Kinetics of a Particle: Energy Methods
4. Kinetics of a Particle: Momentum Methods
5. Mechanical Vibrations
6. Elementary Feedback Control
7. Rigid Body Kinematics
8. Rigid Body Dynamics: Newton’s 2nd Law
10. Rigid Body Dynamics: Momentum Methods

Assessment Tools
1. Weekly Homework Problems
2. Weekly Quizzes Based on the Reading Journal
3. Weekly Lab Reports
4. Exams

Course Objectives
1. To teach dynamic analysis based on Newton’s second method, momentum methods and energy methods. \([1, 5]\)
2. To introduce the use of differential equation models for analyzing and designing dynamic systems. \([1, 3]\)
3. To teach the kinematic analysis of systems consisting of interconnected links. \([1, 5]\)
4. To teach the application of dynamic concepts to the analysis of laboratory experiments, representing real-world systems. \([1, 5, 7]\)
5. To teach the use of MathCAD as an engineering tool for dynamic system analysis. \([10]\)
6. To teach students to learn basic engineering principles from reading. \([9]\)

<table>
<thead>
<tr>
<th>COURSE OUTCOMES*</th>
<th>(Numbers shown in brackets are links to course objectives listed above)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Be able to recognize which coordinate system is appropriate for a given problem in dynamic analysis and understand the use of the appropriate formula for that coordinate system. ([1])</td>
</tr>
<tr>
<td>2.</td>
<td>Given a kinetic analysis problem, be able to determine and apply the most efficient method for its analysis. ([1])</td>
</tr>
<tr>
<td>3.</td>
<td>Be able to derive a differential equation model of a dynamic system. ([2])</td>
</tr>
<tr>
<td>4.</td>
<td>Be able to solve for the solutions of simple unforced and forced vibrational systems. ([2])</td>
</tr>
<tr>
<td>5.</td>
<td>Be able to design a proportional feedback control law for a first or second order dynamic system. ([2])</td>
</tr>
<tr>
<td>6.</td>
<td>Be able to analyze the kinematic behavior of four-bar linkages. ([3])</td>
</tr>
<tr>
<td>7.</td>
<td>Be able to perform kinematic analysis using moving reference frames. ([3])</td>
</tr>
<tr>
<td>8.</td>
<td>Complete and provide a report on several dynamic system labs. ([4, 5])</td>
</tr>
<tr>
<td>9.</td>
<td>Be able to write simple MathCAD programs for dynamic analysis. ([5])</td>
</tr>
<tr>
<td>10.</td>
<td>Completion of the assignments in a reading journal based on the course text. ([6])</td>
</tr>
</tbody>
</table>